| Centre Number       |  |  | Candidate Number |  |  |
|---------------------|--|--|------------------|--|--|
| Surname             |  |  |                  |  |  |
| Other Names         |  |  |                  |  |  |
| Candidate Signature |  |  |                  |  |  |

| A | Q | A          |  |
|---|---|------------|--|
|   |   | <i> </i> 7 |  |

General Certificate of Education Advanced Level Examination June 2015

# **Physics A**

PHYA5/1R

# Unit 5 Nuclear and Thermal Physics Section A

Thursday 18 June 2015 9.00 am to 10.45 am

# For this paper you must have:

- a calculator
- a pencil and a ruler
- a question paper/answer book for Section B (enclosed).

#### Time allowed

• The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately 55 minutes on this section.

# Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this section is 40.
- You are expected to use a calculator, where appropriate.
- A Data and Formulae Booklet is provided as a loose insert in Section B.
- You will be marked on your ability to:
  - use good English
  - organise information clearly
  - use specialist vocabulary where appropriate.



R

# **Section A**

The maximum mark for this section is 40. You are advised to spend approximately 55 minutes on this section.

1 (a) Which ionizing radiation produces the greatest number of ion pairs per mm in air? Tick ( $\checkmark$ ) the correct answer.

[1 mark]

| α particles |  |
|-------------|--|
| β particles |  |
| γ rays      |  |
| X-rays      |  |

1 (b) (i) Complete **Table 1** below showing the typical maximum range in air for  $\alpha$  and  $\beta$  particles. [2 marks]

Table 1

| Type of radiation | Typical range in air / m |
|-------------------|--------------------------|
| α                 |                          |
| β                 |                          |

| 1 | (b) (ii) | $\gamma$ rays have a range of at least 1 km in air.                                                     |
|---|----------|---------------------------------------------------------------------------------------------------------|
|   |          | However, a $\gamma$ ray detector placed $0.5~m$ from a $\gamma$ ray source detects a noticeably smaller |
|   |          | count-rate as it is moved a few centimetres further away from the source.                               |

| Explain this observation. | [1 mark] |
|---------------------------|----------|
|                           |          |
|                           |          |
|                           |          |



| 1 (c) | Following an accident, a room is contaminated with dust containing americium which is an $\alpha\text{-emitter}.$    |   |
|-------|----------------------------------------------------------------------------------------------------------------------|---|
|       | Explain the most hazardous aspect of the presence of this dust to an unprotected human entering the room.  [2 marks] |   |
|       |                                                                                                                      |   |
|       |                                                                                                                      |   |
|       |                                                                                                                      |   |
|       |                                                                                                                      |   |
|       |                                                                                                                      | 6 |

3

Turn over for the next question



2 (a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope of gold.

4

2 (a) (i) State the main interaction when an alpha particle is scattered by a gold nucleus.

[1 mark]

**2 (a) (ii)** The gold foil is replaced with another foil of the same size made from a mixture of isotopes of gold. Nothing else in the experiment is changed.

Explain whether or not the scattering distribution of the monoenergetic alpha particles remains the same.

| יי   | IIIai | v] |
|------|-------|----|
| <br> |       |    |

Data from alpha-particle scattering experiments using elements other than gold allow scientists to relate the radius R, of a nucleus, to its nucleon number, A.

Figure 1 shows the relationship obtained from the data in a graphical form, which obeys the relationship  $R = r_0 A^{\frac{1}{3}}$ .

Figure 1





**2** (b) (i) Use information from Figure 1 to show that  $r_0$  is about  $1.4 \times 10^{-15} \ \mathrm{m}.$ 

[1 mark]

**2** (b) (ii) Show that the radius of a  $^{51}_{23}V$  nucleus is about  $5\times 10^{-15}$  m.

[2 marks]

2 (c) Calculate the density of a  $^{51}_{23}\mathrm{V}$  nucleus.

State an appropriate unit for your answer.

[3 marks]

density ..... unit ......

8



- A rod made from uranium-238 ( $^{238}_{92}$ U) is placed in the core of a nuclear reactor where it absorbs free neutrons.
  - When a nucleus of uranium-238 absorbs a neutron it becomes unstable and decays to neptunium-239 ( $^{239}_{93}$ Np), which in turn decays to plutonium-239 ( $^{239}_{94}$ Pu).
- 3 (a) Write down the nuclear equation that represents the decay of neptunium-239 into plutonium-239.

[2 marks]

A sample of the rod is removed from the core and its radiation is monitored from time  $t=0~\mathrm{s}$ .

The variation of the activity with time is shown in Figure 2.

Figure 2





| 3 (b) (i)  | Show that the decay constant of the sample is about $3.4\times10^{-6}~{\rm s}^{-1}$ . [2 marks] |
|------------|-------------------------------------------------------------------------------------------------|
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
| 2 (b) (ii) | Accuracy that the activity above in Figure 2 capacy only from the decay of mantunium            |
| 3 (D) (II) | Assume that the activity shown in Figure 2 comes only from the decay of neptunium.              |
|            | Estimate the number of neptunium nuclei present in the sample at time $t = 5.0 \times 10^5$ s.  |
|            | [1 mark]                                                                                        |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |
|            | number of nuclei                                                                                |
|            |                                                                                                 |
|            |                                                                                                 |
|            | Question 3 continues on the next page                                                           |
|            |                                                                                                 |
|            |                                                                                                 |
|            |                                                                                                 |



|            | A chain reaction is maintained in the core of a thermal nuclear reactor that is operating normally.                                                                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Explain what is meant by a chain reaction, naming the materials and particles involved.  [2 marks]                                                                                                                |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
| 3 (c) (ii) | Explain the purpose of a moderator in a thermal nuclear reactor.  [2 marks]                                                                                                                                       |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            | Substantial shielding around the core protects nearby workers from the most hazardous radiations. Radiation from the core includes $\alpha$ and $\beta$ particles, $\gamma$ rays, X–rays, neutrons and neutrinos. |
|            | Explain why the shielding becomes radioactive.  [2 marks]                                                                                                                                                         |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                   |

11



| 4 (a) | Lead has a specific heat capacity of $130~J~kg^{-1}~K^{-1}.$                                                         |           |   |
|-------|----------------------------------------------------------------------------------------------------------------------|-----------|---|
|       | Explain what is meant by this statement.                                                                             | [1 mark]  |   |
|       |                                                                                                                      |           |   |
|       |                                                                                                                      |           |   |
|       |                                                                                                                      |           |   |
| 4 (b) | Lead of mass $0.75\ kg$ is heated from $21\ ^oC$ to its melting point and continues theated until it has all melted. | o be      |   |
|       | Calculate how much energy is supplied to the lead. Give your answer to an appropriate number of significant figures. |           |   |
|       | melting point of lead = 327.5 $^{\rm o}C$ specific latent heat of fusion of lead = 23 000 J $kg^{-1}$                | [3 marks] |   |
|       |                                                                                                                      | [e marke] |   |
|       |                                                                                                                      |           |   |
|       |                                                                                                                      |           |   |
|       |                                                                                                                      |           |   |
|       |                                                                                                                      |           |   |
|       | energy supplied                                                                                                      | J         |   |
|       |                                                                                                                      |           | 4 |
|       |                                                                                                                      |           |   |
|       |                                                                                                                      |           |   |



10

Do not write outside the box

| 5 (a) | The concept of an absolute zero of temperature may be explained by reference to the |
|-------|-------------------------------------------------------------------------------------|
|       | behaviour of a gas.                                                                 |

Discuss **one** experiment that can be performed using a gas which would enable you to explain absolute zero and determine its value.

It is not necessary to give full details of the apparatus. Your answer should:

- include the quantities that are kept constant
- identify the measurements to be taken
- explain how the results may be used to find absolute zero
- justify why the value obtained is absolute zero.

| The qu | ality of yo | our written | communi | cation w | ill be ass | essed in | your ansv | ver. | [6 marks] |
|--------|-------------|-------------|---------|----------|------------|----------|-----------|------|-----------|
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          | •••••     |      |           |
|        |             |             |         |          |            |          | •••••     |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |
|        |             |             |         |          |            |          |           |      |           |



| Question 5 continues on the next page |
|---------------------------------------|
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |



| 5 (b) (i) | State <b>two</b> assumptions about the <b>movement</b> of molecules that are used when deriving the equation of state, $pV = \frac{1}{3} N m (c_{\rm rms})^2$ for an ideal gas. |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|           | 1                                                                                                                                                                               |  |  |  |  |  |
|           | 2                                                                                                                                                                               |  |  |  |  |  |
|           |                                                                                                                                                                                 |  |  |  |  |  |

5 (b) (ii) Three molecules move at the speeds shown in Table 2.

Table 2

| molecule | speed / ${ m m~s^{-1}}$ |
|----------|-------------------------|
| 1        | 2000                    |
| 2        | 3000                    |
| 3        | 7000                    |

| O-11-4-   | 41:   |      |         |        |
|-----------|-------|------|---------|--------|
| Laichiata | Thair | mpan | enilara | CNAAA  |
| Calculate | uicii | moan | Sauaic  | SDCCU. |

[1 mark]

mean square speed .....  $m^2 \ s^{-2}$ 



| 5 (c) | The average molecular kinetic energy of an ideal gas is $6.6 \times 10^{-21} \ \mathrm{J}.$ |
|-------|---------------------------------------------------------------------------------------------|
|       | Calculate the temperature of the gas.                                                       |

[2 marks]

 $temperature \ \dots \dots K$ 

11

**END OF SECTION A** 













